## Chapter 2: Intro to Relational Model

## Database System Concepts, $7^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

## Outline

- Structure of Relational Databases
- Database Schema
- Keys
- Schema Diagrams
- Relational Query Languages
- The Relational Algebra


## Example of an Instructor Relation

| ID <br> attributes |  |  |  |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| 10101 | name | Srinivasan | dept_name |  |  |
| (or columns) |  |  |  |  |  |

## Attribute

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value null is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations


## Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Database Schema

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
- schema: instructor (ID, name, dept_name, salary)
- Instance:

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Keys

- Let $\mathrm{K} \subseteq \mathrm{R}$
- $K$ is a superkey of $R$ if values for $K$ are sufficient to identify a unique tuple of each possible relation $r(R)$
- Example: $\{I D\}$ and $\{I D, n a m e\}$ are both superkeys of instructor.
- Superkey $K$ is a candidate key if $K$ is minimal

Example: $\{I D\}$ is a candidate key for Instructor

- One of the candidate keys is selected to be the primary key.
- which one?
- Foreign key constraint: Value in one relation must appear in another
- Referencing relation
- Referenced relation
- Example - dept_name in instructor is a foreign key from instructor referencing department


## Keys (Cont.)

## Employee (EmployeeID, FulIName, SSN, DeptID)

1. Candidate Key: are individual columns in a table that qualifies for uniqueness of all the rows. Here in Employee table EmployeeID \& SSN are Candidate keys.
2. Primary Key: is the columns you choose to maintain uniqueness in a table. Here in Employee table you can choose either EmployeeID or SSN columns, EmployeeID is preferable choice, as SSN is a secure value.
3. Alternate Key: Candidate column other the Primary column, like if EmployeeID is PK then SSN would be the Alternate key.
4. Super Key: If you add any other column/attribute to a Primary Key then it become a super key, like

EmployeelD + FullName is a Super Key.
5. Composite Key: If a table do not have a single columns that qualifies for a Candidate key, then you have to select 2 or more columns to make a row unique. Like if there is no EmployeeID or SSN columns, then you can make FullName + DateOfBirth as Composite primary Key. But still there can be a narrow chance of duplicate row.
6. Foreign Key

## 7. Compound Key

8. Surrogate key

## Schema Diagram for University Database



## Edgar F. Codd (1923-2003)


-PhD from U. of Michigan, Ann Arbor

- Received Turing Award in 1981.
- More see http://en.wikipedia.org/wiki/Edgar_Codd


## Relational Query Languages

- Languages for describing queries on a relational database
- Structured Query Language (SQL)
- Predominant application-level query language
- Declarative
- Relational Algebra
- Intermediate language used within DBMS
- Procedural


## What is an Algebra?

- A language based on operators and a domain of values
- Operators map values taken from the domain into other domain values
- Hence, an expression involving operators and arguments produces a value in the domain
- When the domain is a set of all relations (and the operators are as described later), we get the relational algebra
- We refer to the expression as a query and the value produced as the query result


## Relational Algebra

- Domain: set of relations
- Basic operators: select, project, union, set difference, Cartesian product
- Derived operators: set intersection, division, join
- Procedural: Relational expression specifies query by describing an algorithm (the sequence in which operators are applied) for determining the result of an expression


## The Role of Relational Algebra in a DBMS



## Relational Algebra

- A procedural language consisting of a set of operations that take one or two relations as input and produce a new relation as their result.
- Six basic operators
- Select (sigma): $\sigma$
- Project (pi): П
- union: $\cup$
- set difference: -
- Cartesian product: $x$
- Rename (rho): $\rho$


## Select and Project Operators



## select

project

## Relational Algebra (RA)

- Basic operations:
> Selection - Selects a subset of rows from relation.
> Projection - Deletes unwanted columns from relation.
> Cross-product - Allows us to combine two relations.
> Set-difference - Tuples in reln. 1, but not in reln. 2.
- Union - Tuples in reln. 1 and tuples in reln. 2.
> Rename - Assigns a(nother) name to a relation
■ Additional operations:
> intersection, join, division, assignment: not essential, but very useful
- The operators take one or two relations as inputs and give a new relation as a result.
- Operations can be composed.


## Selection

- Notation(sigma): $\sigma_{p}(r)$
- $p$ is called the selection predicate
- Defined as:

$$
\sigma_{p}(r)=\{t \mid t \in r \text { and } p(t)\}
$$

Where $p$ is a formula in propositional calculus consisting of

## predicates

connectives : $\wedge($ and $), \vee($ or $), \neg($ not $)$
A predicate is one of:
<attribute> op <attribute> or
<attribute> op <constant>
where op is one of: $=, \neq>, \geq,<, \leq$.

* Result schema is same as r's schema


## Select Operation

- The select operation selects tuples that satisfy a given condition.
- Produces table containing subset of rows of argument table satisfying condition
- Notation: $\sigma_{c}(R)$
- $\quad c$ is called the selection condition


## Selection



Condition

## Example:

Select those tuples of the instructor relation where the instructor is in the "Physics" department.

## Query:

$$
\sigma_{\text {dept_name }}=\text { "Physics" } \text { (instructor) }
$$

Result:

| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :--- |
| 22222 | Einstein | Physics | 95000 |
| 33456 | Gold | Physics | 87000 |


| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Select Operator

## Selection

Condition

## Person

| Id | Name | Address | Hobby |
| ---: | :--- | :--- | :--- |
| 1123 | John | 123 Main | stamps |
| 1123 | John | 123 Main | coins |
| 5556 | Mary | 7 Lake Dr | hiking |
| 9876 | Bart | 5 Pine St | stamps |

$\sigma_{\text {Hobby=-stamps }}$ (Person)

| Id | Name | Address | Hobby |
| :--- | :--- | :--- | :---: |
| 1123 | John | 123 Main | stamps |
| 9876 | Bart | 5 Pine St | stamps |

## Selection Condition

- Operators: <, $\leq, \geq,>,=, \neq$
- Simple selection condition:
- <attribute> operator <constant>
- <attribute> operator <attribute>
- We can combine several predicates into a larger predicate by using the connectives:

$$
\wedge(\text { and }), \vee(\text { or }), \neg(\text { not })
$$

- <condition> $\wedge$ <condition>
- <condition> $\vee$ <condition>
-     - <condition>


## Selection Condition - Examples

- $\sigma_{l d}>3000 \mathrm{~V}$ Hobby $=$ hiking ${ }^{\prime}$ (Person)
- $\sigma_{l d>3000} \wedge_{l d<3999}$ (Person)
- $\quad \sigma \neg_{(\text {Hobby }=\text { hiking') }}$ (Person)
- $\sigma_{\text {Hobby } \neq \text { hiking' }}$ (Person)


## Select Operation (Cont.)

## Example:

Find the instructors in Physics with a salary greater $\$ 90,000$, we write:

$$
\sigma_{\text {dept_name }}=\text { "Physics } " \wedge \text { salary }>90,000 \text { (instructor) }
$$

## Result:

| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |


| ID | name | dept_name | salary |
| :---: | :--- | :--- | :--- |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Truth Table

$$
\begin{aligned}
& \wedge \text { (AND), } \\
& \vee(\text { OR) }, \\
& \neg(\text { NOT })
\end{aligned}
$$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{A}$ AND B | A OR B | NOT A |
| :--- | :--- | :--- | :--- | :--- |
| False | False | False | False | True |
| False | True | False | True | True |
| True | False | False | True | False |
| True | True | True | True | False |

## Select Operation (Cont.)

The select condition may include comparisons between two attributes.

## Example:

Find all departments whose name is the same as their building name:

$$
\sigma_{\text {dept_name=building }}(\text { department })
$$

| dept_name | building | budget |
| :--- | :--- | ---: |
| Comp. Sci. | Taylor | 100000 |
| Biology | Watson | 90000 |
| Elec. Eng. | Taylor | 85000 |
| Music | Packard | 80000 |
| Finance | Painter | 120000 |
| History | Painter | 50000 |
| Physics | Watson | 70000 |

(b) The department table

## Selection Example 1

- Relation $r$

| $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | 1 | 7 |
| $\alpha$ | $\beta$ | 5 | 7 |
| $\beta$ | $\beta$ | 12 | 3 |
| $\beta$ | $\beta$ | 23 | 10 |

- $\sigma_{A=B} \wedge D>5(r)$

| $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | 1 | 7 |
| $\beta$ | $\beta$ | 23 | 10 |

## Selection Example 2

## cust

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 21 | Y. Yuppy | 5 | 95 |
| 50 | B. Rusty | 10 | 65 |
| 55 | S. Sneezy | 8 | 70 |

$\sigma_{\text {rating }>7}($ cust $)$

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 50 | R. Rusty | 10 | 65 |
| 55 | S. Sneezy | 8 | 70 |

## Project Operation

- A unary operation that returns its argument relation, with certain attributes left out.
- Produces table containing subset of columns of argument table
- Notation:

$$
\Pi_{A_{1}, A_{2}, A_{3} \ldots . . A_{k}}(R)
$$

where $A_{1}, A_{2}$ are attribute names and $R$ is a relation name.

- The result is defined as the relation of $k$ columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets


## Projection

$\square$ Notation(pi): $\boldsymbol{\pi}_{A_{1}, A_{2}, \ldots, A_{k}}(\boldsymbol{r})$
where $A_{1}, \ldots, A_{k}$ are attributes (the projection list) and $r$ is a relation.

- The result = relation over the $k$ attributes $A_{1}, A_{2}, \ldots, A_{k}$ obtained from $r$ by erasing the columns that are not listed and eliminating duplicate rows.
- Remember: relations are sets!


## Project Operation (Cont.)

- Example: eliminate the dept_name attribute of instructor
- Query:

$$
\Pi_{I D, \text { name, salary (instructor) }}
$$

- Result:

| $I D$ | name | salary |
| :---: | :--- | :---: |
| 10101 | Srinivasan | 65000 |
| 12121 | Wu | 90000 |
| 15151 | Mozart | 40000 |
| 22222 | Einstein | 95000 |
| 32343 | E1 Said | 60000 |
| 33456 | Gold | 87000 |
| 45565 | Katz | 75000 |
| 58583 | Califieri | 62000 |
| 76543 | Singh | 80000 |
| 76766 | Crick | 72000 |
| 83821 | Brandt | 92000 |
| 98345 | Kim | 80000 |


| $I D$ | name | dept_name | salary |
| :---: | :--- | :--- | :---: |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp.Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

## Project Operator

## Example:

Person

| Id | Name | Address | Hobby |
| :---: | :--- | :--- | :--- |
| 1123 | John | 123 Main | stamps |
| 1123 | John | 123 Main | coins |
| 5556 | Mary | 7 Lake Dr | hiking |
| 9876 | Bart | 5 Pine St | stamps |

$\pi_{\text {Name,Hobby }}$ (Person)

| Name | Hobby |
| :--- | :--- |
| John | stamps |
| John | coins |
| Mary | hiking |
| Bart | stamps |

Result is a table (no duplicates); can have fewer tuples than the original

## Projection Example 1

- Relation $r$ :

| $A$ | $B$ | $C$ |
| :---: | :---: | :---: |
| $\alpha$ | 10 | 1 |
| $\alpha$ | 20 | 1 |
| $\beta$ | 30 | 1 |
| $\beta$ | 40 | 2 |

- $\Pi_{\mathrm{A}, \mathrm{C}}(r)$



## Projection Example 2

$$
\pi_{\text {salary }} \text { (Cust) }
$$

Cust

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 38 | R. Rudy | 9 | 95 |
| 32 | G. Grumpy | 8 | 55 |
| 51 | S. Sneezy | 5 | 95 |
| 78 | R. Rusty | 10 | 55 |


$\pi_{\text {cname, rating }}\left(\sigma_{\text {rating }>7}(\right.$ Cust $\left.)\right)$ ?

## Composition of Relational Operations

- The result of a relational-algebra operation is relation and therefore of relational-algebra operations can be composed together into a relational-algebra expression.
- Consider the query -- Find the names of all instructors in the Physics department.

$$
\prod_{\text {name }}\left(\sigma_{\text {dept_name }}=\text { 'Physics' }{ }^{\prime}(\text { instructor })\right)
$$

| ID | name | dept_name | salary |
| :---: | :--- | :--- | :--- |
| 22222 | Einstein | Physics | 95000 |
| 12121 | Wu | Finance | 90000 |
| 32343 | El Said | History | 60000 |
| 45565 | Katz | Comp. Sci. | 75000 |
| 98345 | Kim | Elec. Eng. | 80000 |
| 76766 | Crick | Biology | 72000 |
| 10101 | Srinivasan | Comp. Sci. | 65000 |
| 58583 | Califieri | History | 62000 |
| 83821 | Brandt | Comp. Sci. | 92000 |
| 15151 | Mozart | Music | 40000 |
| 33456 | Gold | Physics | 87000 |
| 76543 | Singh | Finance | 80000 |

- Instead of giving the name of a relation as the argument of the projection operation, we give an expression that evaluates to a relation.


## Example

$$
\pi_{\text {Id, Name }}\left(\sigma_{\text {Hobby='stamps' } \vee} \text { Hobby='coins' } \text { (Person) }\right)
$$

| Id | Name | Address | Hobby |
| :---: | :--- | :--- | :--- |
| 1123 | John | 123 Main | stamps |
| 1123 | John | 123 Main | coins |
| 5556 | Mary | 7 Lake Dr hiking |  |
| 9876 | Bart | 5 Pine St | stamps |


| Id | Name |
| :---: | :---: |
| 1123 | John |
| 9876 | Bart |

Result

## Person

$$
\sigma_{\text {Hobby='stamps' }} \vee \text { Hobby='coins' }^{\prime}(\pi \text { Id, Name }(\text { Person })) ? ?
$$

## Cartesian Product

- If $R$ and $S$ are two relations, $R \times S$ is the set of all concatenated tuples $\langle x, y\rangle$, where $x$ is a tuple in $R$ and $y$ is a tuple in $S$
- $R$ and $S$ need not be union compatible.
- But $R$ and $S$ must have distinct attribute names. Why?
- $R \times S$ is expensive to compute.


| $A$ | $B$ | $C$ | $D$ |
| :---: | :---: | :---: | :---: |
| $x 1$ | $x 2$ | $y 1$ | $y 2$ |
| $x 1$ | $x 2$ | $y 3$ | $y 4$ |
| $x 3$ | $x 4$ | $y 1$ | $y 2$ |
| $x 3$ | $x 4$ | $y 3$ | $y 4$ |
| $R x S$ |  |  |  |

The size of this cartesian product is then the size of R multiplied by the size of S .

## Cartesian (or Cross)-Product

- Notation: $\boldsymbol{r} \times \boldsymbol{s}$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in S\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$ ).
- If $r$ and $s$ have common attributes, they must be renamed in the result.


## Cartesian-Product Operation

- The Cartesian-product operation (denoted by X ) allows us to combine information from any two relations.
- Example: the Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

- We construct a tuple of the result out of each possible pair of tuples: one from the instructor relation and one from the teaches relation (see next slide)
- Since the instructor ID appears in both relations, we distinguish between these attribute by attaching to the attribute the name of the relation from which the attribute originally came.
- instructor.ID
- teaches.ID


## The instructor x teaches table

| Instructor.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| ... | ... | $\cdots$ | ... | ... | $\cdots$ | $\cdots$ | $\cdots$ |  |
| ... | ... | ... | ... | ... | $\cdots$ | ... | ... | $\ldots$ |
| 12121 | Wu | Finance | 90000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 12121 | Wu | Finance | 90000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| ... | $\cdots$ | ... | ... | ... | ... | ... | ... | $\cdots$ |
| ... | $\cdots$ | ... | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | ... | $\ldots$ |
| 15151 | Mozart | Music | 40000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 15151 | Mozart | Music | 40000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 15151 | Mozart | Music | 40000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| ... | *. | ... | ... | -•• | $\cdots$ | ... | ... | $\cdots$ |
| ... | ... | ... | ... | $\cdots$ | $\cdots$ | ... | $\cdots$ | $\cdots$ |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 22222 | Einstein | Physics | 95000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| $\cdots$ |
| $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | *. | $\cdots$ | $\cdots$ | ... | $\cdots$ |

## Cartesian-Product Example 1



r× s: \begin{tabular}{|c|c|c|c|c|}
\hline$A$ \& $B$ \& $C$ \& $D$ \& $E$ <br>

\hline | $\alpha$ | 1 |
| :---: | :---: |$| \alpha$ \& 10 \& $a$ <br>

\hline$\alpha$ \& 1 \& $\beta$ \& 10 \& $a$ <br>
$\alpha$ \& 1 \& $\beta$ \& 20 \& $b$ <br>
$\alpha$ \& 1 \& $\gamma$ \& 10 \& $b$ <br>
$\beta$ \& 2 \& $\alpha$ \& 10 \& $a$ <br>
\hline$\beta$ \& 2 \& $\beta$ \& 10 \& $a$ <br>
\hline$\beta$ \& 2 \& $\beta$ \& 20 \& $b$ <br>
\hline$\beta$ \& 2 \& $\gamma$ \& 10 \& $b$ <br>
\hline
\end{tabular}

$\sigma_{\mathbf{A}=\mathbf{c}}(\boldsymbol{r} \boldsymbol{X} \boldsymbol{s})$| $A$ | $B$ | $C$ | $D$ | $E$ |
| :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $\alpha$ | 10 | $a$ |
| $\beta$ | 2 | $\beta$ | 10 | $a$ |
| $\beta$ | 2 | $\beta$ | 20 | $b$ |

## Cartesian-Product Example 2

## Customer

| $\underline{\text { cid }}$ | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 65 |
| 31 | R. Rubber | 8 | 85 |
| 58 | N. Nusty | 10 | 85 |

Order

| $\underline{\text { cid }}$ | $\underline{\text { iid }}$ | $\underline{\text { day }}$ | qty |
| :---: | :---: | :---: | :---: |
| 22 | 101 | $10 / 10 / 06$ | 10 |
| 58 | 103 | $11 / 12 / 06$ | 5 |

conflicting names

| Customer <br> .cid | sname | rating | salary | Order. <br> cid | iid | day | qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 65 | 22 | 101 | $10 / 10 / 96$ | 10 |
| 22 | J. Justin | 7 | 65 | 58 | 103 | $11 / 12 / 96$ | 5 |
| 31 | R. Rubber | 8 | 85 | 22 | 101 | $10 / 10 / 96$ | 10 |
| 31 | R. Rubber | 8 | 85 | 58 | 103 | $11 / 12 / 96$ | 5 |
| 58 | N. Nusty | 10 | 85 | 22 | 101 | $10 / 10 / 96$ | 10 |
| 58 | N. Nusty | 10 | 85 | 58 | 103 | $11 / 12 / 96$ | 5 |

## Join Operation

- The Cartesian-Product
instructor X teaches
associates every tuple of instructor with every tuple of teaches.
- Most of the resulting rows have information about instructors who did NOT teach a particular course.
- To get only those tuples of "instructor X teaches " that pertain to instructors and the courses that they taught, we write:

$$
\left.\sigma_{\text {instructor.id }=\text { teaches.id }}(\text { instructor } \times \text { teaches })\right)
$$

- We get only those tuples of "instructor X teaches" that pertain to instructors and the courses that they taught.
- The result of this expression, shown in the next slide


## Join Operation (Cont.)

- The table corresponding to:
$\sigma_{\text {instructor.id }}=$ teaches.id $($ instructor $\times$ teaches $\left.)\right)$

| Instructor.ID | name | dept_name | salary | teaches.ID | course_id | sec_id | semester | year |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-101 | 1 | Fall | 2017 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-315 | 1 | Spring | 2018 |
| 10101 | Srinivasan | Comp. Sci. | 65000 | 10101 | CS-347 | 1 | Fall | 2017 |
| 12121 | Wu | Finance | 90000 | 12121 | FIN-201 | 1 | Spring | 2018 |
| 15151 | Mozart | Music | 40000 | 15151 | MU-199 | 1 | Spring | 2018 |
| 22222 | Einstein | Physics | 95000 | 22222 | PHY-101 | 1 | Fall | 2017 |
| 32343 | E1 Said | History | 60000 | 32343 | HIS-351 | 1 | Spring | 2018 |
| 45565 | Katz | Comp. Sci. | 75000 | 45565 | CS-101 | 1 | Spring | 2018 |
| 45565 | Katz | Comp. Sci. | 75000 | 45565 | CS-319 | 1 | Spring | 2018 |
| 76766 | Crick | Biology | 72000 | 76766 | BIO-101 | 1 | Summer | 2017 |
| 76766 | Crick | Biology | 72000 | 76766 | BIO-301 | 1 | Summer | 2018 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-190 | 1 | Spring | 2017 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-190 | 2 | Spring | 2017 |
| 83821 | Brandt | Comp. Sci. | 92000 | 83821 | CS-319 | 2 | Spring | 2018 |
| 98345 | Kim | Elec. Eng. | 80000 | 98345 | EE-181 | 1 | Spring | 2017 |

## Join Operation (Cont.)

- The join operation allows us to combine a select operation and a Cartesian-Product operation into a single operation.
- Consider relations $r(R)$ and $s(S)$
- Let "theta" be a predicate on attributes in the schema R "union" $S$. The join operation $r \bowtie_{\theta} s$ is defined as follows:

$$
r \bowtie_{\theta} s=\sigma_{\theta}(r \times s)
$$

- Thus

$$
\sigma_{\text {instructor.id }=\text { teaches.id }} \text { (instructor } \mathrm{x} \text { teaches )) }
$$

- Can equivalently be written as

$$
\text { instructor } \bowtie_{\text {Instructor.id = teaches.id }} \text { teaches. }
$$

## Joins

Join: One of the most important ops implemented in a DBMS. Many efficient algorithms.

## Condition Join:

$$
R \triangleright \triangleleft_{c} S=\sigma_{c}(R \times S)
$$

- Result schema same as that of cross-product.
- Fewer tuples than cross-product
$>$ might be able to compute more efficiently
- Sometimes called a theta-join.


## Condition Join Example

C1

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 80 |
| 31 | R. Rubber | 8 | 70 |
| 58 | N. Nusty | 10 | 90 |

O1

| cid | iid | day | qty |
| :---: | :---: | :---: | :---: |
| 22 | 101 | $10 / 10 / 96$ | 10 |
| 58 | 103 | $11 / 12 / 96$ | 5 |

$C 1 \triangleright \triangleleft{ }_{C 1 . \text { cid }<}<$ O1.cid $O 1$

| C1.cid | cname | rating | salary | O1.cid | iid | day | qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 80 | 58 | 103 | $11 / 12 / 96$ | 5 |
| 31 | R. Rubber | 8 | 70 | 58 | 103 | $11 / 12 / 96$ | 5 |

## Equi-Join \& Natural Join

- Equi-Join: A special case of condition join where the condition $c$ contains only equalities
$\rightarrow$ Result schema: similar to cross-product, but contains only one copy of fields for which equality is specified
- Natural Join: Equijoin on all common attrs.
$>$ Result schema: similar to cross-product, but contains only one copy of each common field
$\Rightarrow$ no need to show the condition


## Equi \& Natural Join Examples

O1

| $\underline{\text { cid }}$ | $\underline{\text { iid }}$ | $\underline{\text { day }}$ | $\underline{\text { qty }}$ |
| :---: | :---: | :---: | :---: |
| 22 | 101 | $10 / 10 / 96$ | 10 |
| 58 | 103 | $11 / 12 / 96$ | 5 |

$C 1 \triangleright \triangleleft_{C 1 . c i d}=O 1 . . c i d=1$

| cid | cname | rating | salary | iid | day | qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 85 | 101 | $10 / 10 / 96$ | 10 |
| 58 | N. Nusty | 10 | 90 | 103 | $11 / 12 / 96$ | 5 |

$C 1 \triangleright \triangleleft O 1$

| cid | cname | rating | salary | iid | day | qty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 85 | 101 | $10 / 10 / 96$ | 10 |
| 58 | N. Nusty | 10 | 90 | 103 | $11 / 12 / 96$ | 5 |

## Union, Intersection, Set-Difference

- Notation: $\boldsymbol{r} \cup \boldsymbol{s}$ $r \cap s$
$r-s$
- Defined as:

$$
\begin{aligned}
& r \cup s=\{t \mid t \in r \text { or } t \in S\} \\
& r \cap s=\{t \mid t \in r \text { and } t \in S\} \\
& r-s=\{t \mid t \in r \text { and } t \notin S\}
\end{aligned}
$$

$\square$ For these operations to be well-defined:

1. r,s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of $r$ has same domain of values as the 2nd column of $s$ )

- What is the schema of the result?


## Union Compatible Relations

- Two relations are union compatible if
- Both have same number of columns (attributes)
- Names of attributes are the same in both
- Attributes with the same name in both relations have the same domain
- Union compatible relations can be combined using union, intersection, and set difference


## Union, Int., Diff. Examples

Relations $r$, $s$ :


$\mathrm{r} \cup \mathrm{s}:$| $A$ | $B$ |
| :---: | :---: |
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| $\beta$ | 1 |
| $\beta$ | 3 |

$r \cap S:$

$r-s:$


## Union, Int., Diff. Examples

C1

| $\underline{\text { cid }}$ | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 65 |
| 31 | R. Rubber | 8 | 85 |
| 58 | N. Nusty | 10 | 85 |

$C l \cup C 2$

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 65 |
| 31 | R. Rubber | 8 | 85 |
| 58 | N. Nusty | 10 | 85 |
| 44 | G. Guppy | 5 | 70 |
| 28 | Y. Yuppy | 9 | 95 |

C2

| $\underline{\text { cid }}$ | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 28 | Y. Yuppy | 9 | 95 |
| 31 | R. Rubber | 8 | 85 |
| 44 | G. Guppy | 5 | 70 |
| 58 | N. Nusty | 10 | 85 |

$C 1-C 2$

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 22 | J. Justin | 7 | 65 |

$C 1 \cap C 2$

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 31 | R.Rubber | 8 | 85 |
| 58 | N. Nusty | 10 | 85 |

## Set intersection in terms of minus

$\square r \cap s=r-(r-s)$.



## Union Operation

- The union operation allows us to combine two relations
- Example: find all courses taught in the Fall 2017 semester, or in the Spring 2018 semester, or in both


$$
\begin{aligned}
& \prod_{\text {course_id }}\left(\sigma_{\text {semester= "Fall" }} \wedge \text { year=2017 }(\text { section })\right) \cup \\
& \prod_{\text {course_id }}\left(\sigma_{\text {semester= "Spring" }} \wedge \text { year=2018 }(\text { section })\right)
\end{aligned}
$$

## Union Operation (Cont.)

- Result of:

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester= "Fall" }} \wedge \text { year=2017 }(\text { section })\right) \cup \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester= "Spring" }} \wedge \text { year=2018 }(\text { section })\right)
\end{aligned}
$$

| course _id |
| :--- |
| CS-101 |
| CS-315 |
| CS-319 |
| CS-347 |
| FIN-201 |
| HIS-351 |
| MU-199 |
| PHY-101 |

## Set-Intersection Operation

- The set-intersection operation allows us to find tuples that are in both the input relations.
- Example: find the set of all courses taught in both the Fall 2017 and the Spring 2018 semesters.

$$
\begin{gathered}
\prod_{\text {course_id }}\left(\sigma_{\text {semester= "Fall" }} \wedge \text { year=2017 }(\text { section })\right) \cap \\
\prod_{\text {course_id }}\left(\sigma_{\text {semester= }} \text { "Spring" } \wedge \text { year=2018 }(\text { section })\right)
\end{gathered}
$$

Result:
course_id
CS-101

## Set Difference Operation

- The set-difference operation allows us to find tuples that are in one relation but are not in another.
- Example: find all courses taught in the Fall 2019 semester, but not in the Spring 2020 semester

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester }=\text { "Fall" } \wedge \text { year=2019 }}(\text { section })\right) \text { - } \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester }}=\text { "Spring" } \wedge \text { year=2020 }(\text { section })\right)
\end{aligned}
$$

| course_id |
| :--- |
| CS-347 |
| PHY-101 |

## The Rename Operation

- The results of relational-algebra expressions do not have a name that we can use to refer to them.
- The rename operator, $\rho$, is provided for that purpose
- The expression:

$$
\rho_{x}(E)
$$

returns the result of expression $E$ under the name $x$

- Another form of the rename operation:

$$
\rho_{x(A 1, A 2, . . A n)}(E)
$$

## Rename Example

■ cust(cid, cname, rating, salary).

- Find pairs of customer names (c1,c2) such that $c 1$ is rated higher than $c 2$ but is paid less.

In RA: $\pi_{\text {cname,cust1.cname }}\left(\sigma_{\text {rating }}>\right.$ cust1.rating $\wedge$ salary<cust1.salary $\left(\right.$ cust $\times \rho_{\text {cust } 1}($ cust $\left.\left.)\right)\right)$.


## Rename Example - another way

Transcript (Studld, CrsCode, Semester, Grade)
Teaching (Profld, CrsCode, Semester)

```
\pi
    * }\mp@subsup{\pi}{\mathrm{ Profld, CrsCode (Teaching) [Profld, CrsCode2]}}{
```

This is a relation with 4 attributes:
StudId, CrsCode1, ProfId, CrsCode2

## The Assignment Operation

- It is convenient at times to write a relational-algebra expression by assigning parts of it to temporary relation variables.
- The assignment operation is denoted by $\leftarrow$ and works like assignment in a programming language.
- Example: find all instructor in the "Physics" and Music department.

$$
\begin{aligned}
& \text { Physics } \leftarrow \sigma_{\text {dept_name }=\text { "Physics" }} \text { (instructor) } \\
& \text { Music } \leftarrow \sigma_{\text {dept_name }=\text { "Music" }} \text { (instructor) } \\
& \text { Physics } \cup \text { Music }
\end{aligned}
$$

- With the assignment operation, a query can be written as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.


## $\neq$ vs -

- Recall the relations cust(cid, cname, rating, salary) and ord(cid, iid, day, qty) and consider the queries:
- Q1: Find items (iid) ordered by someone other than the customer with cid 32.

■ Q2: Find items in ord that are not ordered by customer with cid 32.

| cid | iid | day | qty |
| :---: | :--- | :--- | :--- |
| 32 | I1 | $15 / 01 / 2013$ | 5 |
| 23 | I1 | $16 / 01 / 2013$ | 3 |
| 23 | I2 | $17 / 01 / 2013$ | 2 |
| 16 | I3 | $15 / 01 / 2013$ | 2 |

## $\neq$ Vs -

- We can express Q1 as

$$
\pi_{i i d}\left(\sigma_{c i d \neq 32}(o r d)\right)
$$

- We can express Q2 as

$$
\pi_{i i d}(\text { ord })-\pi_{i i d}\left(\sigma_{c i d=32}(\text { ord })\right)
$$

## Division

- Notation: $r / s$ or $r \div s$
- Useful for expressing queries that include a "for all" or "for every" phrase
- Let $r$ and $s$ be relations on schemas $R$ and $S$ respectively where

$$
\begin{aligned}
& >R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right) \\
& >S=\left(B_{1}, \ldots, B_{n}\right)
\end{aligned}
$$

Then $r / s$ is a relation on schema

$$
R-S=\left(A_{1}, \ldots, A_{m}\right)
$$

defined as

$$
r / s=\left\{t \mid t \in \Pi_{R-S}(r) \wedge \forall u \in s(t u \in r)\right\}
$$

- Informally, $r / s$ contains the (parts of) tuples of $r$ that are associated with every tuple in s.


## Examples of Division A/B

| $A$ |
| :--- |
| sno pno <br> s1 p1 <br> s1 p2 <br> s1 p3 <br> s1 p4 <br> s2 p1 <br> s2 p2 <br> s3 p2 <br> s4 p2 <br> s4 p4 |


| $\frac{B 1}{}$ |
| :---: |
| pno |
| p 2 |
|  |
| $A / B 1$ |
| sno |
| s1 |
| s2 |
| s3 |
| s4 |



A/B2

| sno |
| :--- |
| s1 |
| s4 |

A/B3

| sno |
| :--- |
| s1 |

## More on Division

cust(cid, cname, rating, salary)
ord(cid, iid, day, qty)

Query: Find items (iid) that are ordered by every customer.
Don't know beforehand how many customers there are.

If there are 5 customers and you know their cid's (or look them up), how will you write this query in RA? What if there are 100?

Division lets us write this query concisely no matter how many customers ...

## Division

| ord |  |  |  |
| :---: | :---: | :---: | :---: |
| cid | iid | day | qty |
| 32 | I1 | $15 / 01 / 2013$ | 5 |
| 23 | I1 | $16 / 01 / 2013$ | 3 |
| 23 | I2 | $17 / 01 / 2013$ | 2 |
| 16 | I3 | $15 / 01 / 2013$ | 2 |
| 23 | I3 | $10 / 01 / 2013$ | 5 |

cust

| cid | cname | rating | salary |
| :---: | :---: | :---: | :---: |
| 16 | J. Justin | 9 | 85 |
| 23 | R. Rubber | 8 | 90 |
| 32 | N. Nusty | 10 | 95 |

## Division (contd.)

## $\pi_{\text {iid, cid }}($ ord $) \div \pi_{\text {cid }}($ cust $)$

## Equivalent Queries

- There is more than one way to write a query in relational algebra.


## Example:

Find instructors in the Physics department with salary greater than 90,000

- Query 1

$$
\sigma_{\text {dept_name }=\text { "Physics" }} \wedge \text { salary }>90,000 \text { (instructor) }
$$

- Query 2

$$
\left.\sigma_{\text {dept_name }}=\text { "Physics" }\left(\sigma_{\text {salary }}>90.000 \text { (instructor }\right)\right)
$$

- The two queries are not identical; they are, however, equivalent -they give the same result on any database.


## Equivalent Queries

- There is more than one way to write a query in relational algebra.


## Example:

Find information about courses taught by instructors in the Physics department

- Query 1

$$
\sigma_{\text {dept_name }}=\text { "Physics" } \text { (instructor } \bowtie_{\text {instructor.ID }=\text { teaches.ID }} \text { teaches) }
$$

- Query 2

$$
\left(\sigma_{\text {dept_name }}=\text { "Physics" }(\text { instructor })\right) \bowtie_{\text {instructor.ID }=\text { teaches.ID }} \text { teaches }
$$

- The two queries are not identical; they are, however, equivalent -they give the same result on any database.


## End of Chapter 2

## RA Practice

## Question 1

Consider the following three tables, $\mathrm{T} 1, \mathrm{~T} 2$ and T 3 :

| T1 |  |  |  |
| :--- | :--- | :--- | :--- |
| A | B | C | D |
| 10 | a | 5 | 10 |
| 15 | b | 8 | 9 |
| 25 | a | 6 | 0 |


| T2 |  |
| :--- | :--- |
| E | B |
| 1 | $b$ |
| 5 | $c$ |
| 6 | $b$ |



Show the results of the following relational algebra queries

$$
\begin{aligned}
& \sigma_{\mathrm{C}>5 \vee_{B}=a}(T 1) \\
& \sigma_{E>2 \wedge B=b}(T 2) \\
& \pi_{B}(T 1) \cap \pi_{B}(T 2) \\
& \mathrm{T} 1 \bowtie_{\mathrm{T} 1 . \mathrm{C}=\mathrm{T} 2 . \mathrm{E}} \mathrm{~T} 2 \\
& \sigma_{E<4}\left(\mathrm{~T} 1 \bowtie \mathrm{~T}_{2} \bowtie_{\mathrm{T} 3}\right)
\end{aligned}
$$

## Question2

Student (sid, sname)
Instructor (iid, iname)
Course (cid, iid, cname)
Grades (sid, cid, grade)
Write relational algebra for the following queries.

1. Find the name of the students who have registered in the course with cid COMP 440.
2. Find the ids of the students who never received a grade $F$.
3. Give a list of all people (Instructors and Students), with their ID and name.
4. Find the ids of the courses taught by at least two different instructors.

## Question2

Student (sid, sname), Instructor (iid, iname), Course (cid, iid, cname), Grades (sid, cid, grade)
Find the ids of the courses taught by at least two different instructors.

## Course

| cid | lid | cname |
| :---: | :---: | :---: |
| COMP440 | 11 | DB |
| COMP440 | 12 | DB |
| COMP110 | 13 | Java |

Course x Course

| cid | iid | cname | cid' | iid' $^{\prime}$ | cname' |
| :--- | :---: | :---: | :---: | :---: | :---: |
| COMP440 | 11 | DB | COMP440 | 11 | DB |
| COMP440 | 11 | DB | COMP440 | 12 | DB |
| COMP440 | 11 | DB | COMP110 | 13 | Java |
| COMP440 | 12 | DB | COMP440 | 11 | DB |
| COMP440 | 12 | DB | COMP440 | 12 | DB |
| COMP440 | 12 | DB | COMP110 | 13 | Java |
| COMP110 | 13 | Java | COMP440 | 11 | DB |
| COMP110 | 13 | Java | COMP440 | 12 | DB |
| COMP110 | 13 | Java | COMP110 | 13 | Java |

